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Effects of nonadiabaticity on the voltage generated by a moving domain wall
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We determine the voltage generated by a field-driven transverse domain wall, taking into account nonadia-
batic corrections to the motive force induced by the time-dependent spin Berry phase. Both the diffusive and
ballistic transport regimes are considered. We find that the nonadiabatic corrections, together with the contri-
butions due to spin relaxation, determine the voltage for driving fields smaller than the Walker breakdown

limit.
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I. INTRODUCTION AND SUMMARY OF RESULTS

This paper develops the theory of nonadiabatic correc-
tions to the voltage generated by a moving domain wall. This
aim is primarily motivated by the fact that in certain situa-
tions, for example, that of a narrow wall, these corrections
are important for the correct description of current-driven
domain-wall motion. We find that nonadiabatic corrections
play an important role in the reverse process as well.

This introductory section is intended to be self-contained.
The more technical sections can be consulted for details of
the various calculations. We discuss current-driven magneti-
zation dynamics and the reverse process—generation of cur-
rent by a time-dependent magnetization texture—in two
separate subsections. Our main results are presented and dis-
cussed at the end of this section.

A. Current-driven magnetization dynamics

Let us consider a ferromagnetic metallic wire far below
the Curie temperature, characterized by a unit vector €(x,7)
in the direction of magnetization. Suppose we drive an elec-
tric current through the wire, say, in the x direction and the
magnetization direction only varies in this direction. In the
adiabatic limit, that is, when the inverse Fermi wave number
kr or the electron mean free path is much smaller than the
typical length scale of magnetization-direction variation, the
electric transport current is spin polarized in the local direc-
tion of magnetization. As the electrons traverse a noncol-
linear part of the ferromagnet, where the magnetization di-
rection changes from Q(x,7) to Q(x+dx,1), the conduction
electrons experience a torque that changes their spin-
polarization direction. This torque is exerted by the magne-
tization. Conversely, there is a reaction torque on the mag-
netization given by

dQ(x,1)
ot

dQ(x,1)

o« Q(x + dx,t) — Q(x,1)
ax

current

(1)

called a spin-transfer torque.'” This expression hinges on
conservation of total spin. Roughly speaking, the magnetiza-
tion and conduction-electron-spin precess around each other
while conserving their total spin angular momentum. When
there is electron-spin relaxation, in metals primarily due to
spin-orbit coupling and spin-flip scattering events, there is an
additional current-induced torque. In the adiabatic limit this
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torque turns out to be in the form of (x,r) X 9€2/ dx, which
is understood from the requirement that it should be perpen-
dicular both to the magnetization direction and to the torque
in Eq. (1). In the adiabatic limit the torques due to the current
are sum of these two contributions and are given by

dQ(x,1)

Py = (vy- V)X, 1) + B L2 (x,1)

current

X (v, - V)QUx,1), (2)

with B, as a dimensionless coefficient that characterizes the
degree to which spin is not conserved in the spin-transfer
process.®™13 The velocity v,=—Pj/|e|p, is proportional to the
current j (with P as the current spin polarization, p, as the
density difference of majority and minority-spin electrons,
and —|e| as the electron charge). The two terms on the right-
hand side of the above equation are properly called the reac-
tive and dissipative adiabatic spin-transfer torques,'>-!3 re-
spectively, although they are also referred to as adiabatic and
nonadiabatic for reasons that will become clear shortly.

In a series of papers, Tatara et al.'®'® also considered
nonadiabatic corrections to Eq. (2),'° which quite generally
contribute a nonlocal term to Eq. (2) so that it becomes

dQ(x,1)

P =(vy- V)X, 1) + B2 (x,1)

current

X (v V)Qx.0)+ T [Q], ()

with I', [ ] as a functional that can in principle be evaluated
in certain limits. (See also Refs. 20-22 for a treatment of
nonadiabatic corrections.) In particular, Tatara et al.'®'3 con-
sidered the effect of momentum transfer, which corresponds
physically to electrons scattering off the magnetization tex-
ture. The evaluation of the nonlocal torque I'[] that corre-
sponds to this process is quite complicated for a general
magnetization texture. Motivated by ongoing
experimental”>3® and  theoretical®-1%16-18.20.2231-35 e
searches on current-driven motion of domain walls, Tatara et
al.'®'% evaluated Eq. (3) within a simple variational descrip-
tion of the domain wall. Namely, they showed that for a
straight rigid domain wall Eq. (3) yields

dy(t)

Uy
dt = (Bsr + ﬂna)x P

current
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FIG. 1. (Color online) Illustration of a domain wall at position
r4w(?) in @ magnetic field B pointing in the z direction. The chirality
¢o(2) is the angle of the spin at the position of the domain wall with
the x-y plane.

drdw(t)

=v,, 4
it U (4)

current

where the current is taken in the direction of the domain
wall, i.e., in the direction of varying magnetization. In the
above expression the dynamical variational parameters ry,(7)
and ¢(r) denote the position of the domain wall and its
chirality, respectively. For the case of an easy-plane ferro-
magnet, for example, ¢(7) is the canting angle with which
the magnetization tilts out of the easy plane at the domain-
wall position. Furthermore, \ is the width of the domain
wall, determined by the competition between exchange and
anisotropy. See Fig. 1 for an illustration.
In the clean limit, the coefficient B,, is found as!”

A lef?
_Nepde (5)

ﬁna=P—A P

with A is the cross section of the magnetic wire perpendicu-
lar to the domain wall and current direction, N, is the number
of electrons, and py,, is the contribution to the resistivity due
to the domain wall.

Interestingly, the momentum-transfer process, described
by a complicated nonlocal term in Eq. (3) for the full
magnetization-direction dynamics, yields a simple renormal-
ization of B at the level of the variational description in Eq.
(4)."® [This is the reason for referring to the term propor-
tional to B in Eq. (3) as “nonadiabatic,” which is strictly
speaking incorrectly.] The main result of this paper is that the
same renormalization occurs for the case of charge-current
generation by a moving domain wall.

We end this subsection by mentioning that, over the last
few years, Eqs. (3) and (4) have been actively debated. In
particular, the ratio of the coefficient S, to the so-called
Gilbert damping constant « that governs magnetization re-
laxation has been a subject of interest. Although it is now
generally accepted that this ratio is generally not equal to 1,
as indicated by microscopic theories!"!® and recent
experiments,’® characterizing and optimizing the various
processes that lead to current-driven domain-wall motion
will most likely remain an active topic of research in the near
future.
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B. Current generated by a time-dependent magnetization
texture

The reverse process of current-driven magnetization dy-
namics is the generation of current and voltage by a time-
dependent magnetization texture. The expression for the
charge current is given by3"~40

o o -
Ja=- M/(UT -0y Ef dxA o [Qx,1)]V Qo (X,7)

+ By f s g 0w ©

with V as the volume of the system and o; and o) as the
respective conductivities of the majority and minority-spin
electrons. In this paper, a summation over repeated indices
a,a " e{x,y,z} is implied.

The three terms in the above equation correspond,
roughly speaking, to the three terms on the right-hand side of
Eq. (3), respectively. That is, the first term is adiabatic and,
loosely speaking, is due to conservation of spin. It is given in

terms of a vector potential ga(ﬂ) of a magnetic monopole in
spin space (not to be confused with the electromagnetic vec-
tor potential A that we will introduce later on) that obeys

ea,ar,auﬂga//&ﬂanzﬂa and is well known from the path-
integral formulation for spin systems.*! This term corre-
sponds to the time derivative of the flux of a monopole mag-
netic field (in spin space) enclosed by the path €(x,) on the
unit sphere and is the motive force induced by the time-
dependent spin Berry phase. It was first discussed by Stern’’
and later by Barnes and Maekawa® in the context of Fara-
day’s law in a ferromagnetic metal.

Before discussing the remaining two contributions to the
generated current, we give, for completeness and future ref-
erence, first an expression for the voltage drop AV in the «
direction across a wire of length L with cross-sectional area
A. Using AV=j,L/(o+0), we find

0Q(x,1)
- el deﬂ(x,t) . {—ﬁt XV, Q(x,1)

+ B f dxy -V QUx,1) + £, [ Q] [ ()

where we used the properties of the vector potential A(Q) to
work out the first term in Eq. (6) and P=(o-0))/ (0}
+0). Note that in deriving the expression for the voltage we
have assumed that the total conductivity is given by o+0
and have therefore neglected other contributions, e.g., due to
the presence of a domain wall and/or anisotropic magnetore-
sistance. We will come back to this point in Secs. II-IV.
The second term in Egs. (6) and (7) was first derived in
Ref. 39 using response-function techniques. It corresponds to
an adiabatic correction, due to spin-orbit coupling and spin-
flip scattering, to the Berry-phase-induced motive force
(which is also adiabatic). The same correction was found by
Tserkovnyak and Mecklenburg®® using Onsager reciprocity.
We mention also the work by Saslow*? who considered the
generation of electric current by time-dependent magnetiza-
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tion textures in the absence of conservation of spin within
the framework of irreversible thermodynamics.

The last contribution to Egs. (6) and (7), proportional to
Ena 2], corresponds formally to all terms beyond linear or-
der in spatial gradients of the magnetization direction. Al-
though, to the best of our knowledge, it has not been consid-
ered in great detail, it could be calculated, for example, order
by order in a gradient expansion. The main result of this
paper is that, when Egs. (6) and (7) are evaluated within the
same description that yields Eq. (4) from Eq. (3), one finds
that*?

AV = E(U Y >|:Q.50(l‘)— (Bsr+:8na)i‘dw(t) ) (8)

_|€| O-T+O-l A

Hence, taking into account nonadiabatic corrections to the
generated current again amounts to the renormalization S,
— Byt Bua at the level of the effective (variational) model.
To arrive at this result it turns out to be sufficient to assume
Eq. (4) from which the above result can be straightforwardly
derived, as we show in the Sec. II.

Next, we give the result for the evaluation of Eq. (8) for
the case of a field-driven domain wall with an easy plane and
a hard axis. In this case, the wall moves with constant veloc-
ity below the so-called Walker breakdown field By,.** This
field is proportional to the hard axis anisotropy energy and to
the Gilbert damping constant «;. The domain-wall preces-
sion angle is time independent for fields B smaller than By,.
Above this field the domain-wall chirality becomes time de-
pendent and the domain wall undergoes oscillatory motion.
The result in Eq. (8) leads to*

AV (Be+ B B
Vo  ag By

(Bss + Bua)

L —7
67

(s N v
1+CYG BW

with Vy=PguzBy/|e|, in terms of the gyromagnetic ratio g
and the Bohr magneton u. For typical experiments® (B,
~100 Oe) we have that V,~0.5 uV. Note that V, is
roughly the Walker breakdown field converted to a voltage.
In Fig. 2 we plot this result for various values of (B,
+Bya)/ . From this figure, and also from the expression in
Eq. (9), it is obvious that below Walker breakdown the in-
duced voltage is completely determined by the spin-orbit
coupling and spin-flip scattering and by the nonadiabatic cor-
rections.

In Sec. II we derive our main result in Eq. (8). In Sec. III
we investigate how the two contributions to the generated
voltage, proportional to dry,/dt and d¢y/dt, arise in a bal-
listic model for electron transport. We end in Sec. IV with a
short discussion and outlook. Before we turn to the more
technical part of this paper, let us end this section with a brief
description of other work on the generation of charge current
by a time-dependent magnetization. Already, in 1986,
Berger*® discussed the generation of current by moving do-
main walls in terms of an analog of the Josephson effect. The
motive force due to the time-dependent spin Berry phase was
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AV,

FIG. 2. Voltage induced by a moving domain wall for Gilbert
damping a;=0.01 and various values of 8= B, + ,,.- The voltage
is normalized to Vy=PguzBy/|e|. The magnetic field B is in unit of
the Walker breakdown field Byy. For typical experiments we have
that Vy~0.5 wV.

first pointed out by Stern’” in the context of a mesoscopic
ring with a Zeeman magnetic field, and later considered in
the context of domain walls by Barnes and Maekawa.’® Both
these works did not consider the effects of spin-orbit cou-
pling and spin-flip scattering in the adiabatic limit. This was
done first in Ref. 39, by Saslow,*? and by Tserkovnyak and
Mecklenburg.*® The limit of strong Rashba spin-orbit cou-
pling was considered by Ohe et al.*’ Yang et al.*® evaluated
Eq. (7) with B,=0 and without nonadiabatic corrections us-
ing results of micromagnetic simulations for straight and vor-
tex domain walls. Stamenova et al.*’ performed a detailed
numerical analysis of the Berry-phase-induced motive force,
also without considering spin-orbit coupling or spin-flip scat-
tering.

Very recently, the electromotive force has been measured
for vortex-type domain walls®® in which the nonadiabatic
effects, which are the main focus of the present paper, likely
play a less important role than in straight domain walls. Fol-
lowing this very important experimental result, we expect
that more experimental results will be reported on in the near
future.

II. DIFFUSIVE TRANSPORT REGIME

In the diffusive transport regime, we assume that the fer-
romagnetic metal is characterized by conductivities o and
o, for the majority and minority-spin bands, respectively.
Furthermore, we assume that the velocity v, is given by the
linear-response expression

US:_(O'I—O')E’ (10)

lels
where the electric field E is taken in the domain-wall direc-
tion. The easiest way to proceed is by writing down an action
A[rgw, @] that, upon variation, reproduces the equation of
motion for the variational parameters in Eq. (4). Using the
short-hand notation
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ﬁE(ﬁsr+Bna)’ (11)
we have in imaginary time 7=ir that
kT
Alrg o] = f d N{ e DD 0, = o(7)
A dr
- ﬁﬂvs—’d;@ ] : (12)

with kgT as the thermal energy. Here, N=NAp; is the number
of electron spins in the domain wall. In principle, the action
for the domain wall contains potential-energy terms due to
anisotropy, inhomogeneities, and external magnetic field.
They are, however, not important in describing the coupling
of the current to the domain wall and are omitted in the
above expression [as well as in Eq. (4)].

Although the above action can in principle be derived
microscopically within a given approximation scheme, this is
not needed here. All we need to extract the contributions to
the current due to the moving domain wall is the fact that
there exists a response function II(x,x’;7—7") such that

HikyT
vff dr’def dx'Tl(x,x" ;7= T)A(',7) (13)
0

reduces to Eq. (10) for a vector potential,
cE .
A(X7 T) == _e_lwp‘rv (14)

when we take the zero-frequency limit w,— 0. Here, c is the
velocity of light. This requirement determines the low-

frequency behavior of the response function ﬁ(iwn) defined
by

> H(iw,)e ™) = fdxjdxl‘[(xx T—17)

(15)

ﬁ/kBT

as

H(iw,) = uﬁﬂ, (16)

with w,=2mnkzT/h as the bosonic Matsubara frequencies.
At this point we note that the nonadiabaticity, although
somewhat hidden in the formalism, is incorporated by allow-
ing the response function Il(x,x’;7—7") to depend arbi-
trarily on the spatial coordinates x,x’.

The next ingredient we need is that quite generally the
expectation value of the electric current j is given by a func-
tional derivative of the effective action via

. 5A[rdw’¢0]
J_C—éA(x,T) . (17)

This yields in first instance for the current
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c (ksT
j=zf() dT’f dxf dx'p.h
{[mr) p— ranlT )]mx,x';r'—r)}. (18)

Using now the result in Eq. (16) we find in the low-
frequency limit that

. deg(7)
J=_l|e|L( T 1)[ o

=B | (19)

drdww)}
which, after a Wick rotation 7=it and realizing that AV
=jL/(o+0)), leads to Eq. (8).

This result is rather general in the sense that it does not
depend on specific values of a; and B+ f3,, or the micro-
scopic mechanisms contributing to these coefficients. The
only input is that Eq. (4), together with Ohm’s law in Egq.
(10), holds. Moreover, the result is applicable within both the
s-d and the Stoner model for ferromagnetism. We emphasize,
however, that the result derived in this section does not
present a microscopic derivation of an expression for f.
Rather, it relies on the validity of Eq. (4). Finally, it is im-
portant to note that in calculating the voltage AV, we have
neglected the contribution to the conductivity due to the
presence of the domain wall. In the ballistic limit, to be
discussed in Sec. III, this contribution is accounted for rather
straightforwardly.

III. BALLISTIC LIMIT

In this section we show how the two contributions to the
voltage in Eq. (8), proportional to d¢y/dt and drg,/dt, re-
spectively, arise in the ballistic limit where the scattering
theory of electronic transport®! is applicable. This is instruc-
tive as the discussion of the generation of spin and charge
currents in mesoscopic systems, called spin pumping and
charge pumping, respectively, is usually done within this
framework. Applications involve quantum dots>> and
single-domain ferromagnets.’%-0

The starting point is the expression due to Biittiker et
al>’%!" who gave the current in terms of derivatives of the
scattering matrix

(?S (95;}, dX]
Sy’ (20)
aX X, dt

e|ET

to lowest order in the time derivatives. We note at this point
that, although the above expression is first order in time de-
rivatives, it contains all nonadiabatic corrections'® because it
depends on the scattering matrix which in turn depends on
the full magnetization texture {)(x) and not only its first-
order spatial derivative d€2(x)/dx. (Note, however, that in
this section we ignore the contribution due to spin relaxation
to the induced current and voltage.) In this expression, I, is
the current® into reservoir v, and the sum v’ €{1,2} runs
over the left and right reservoirs (lead), denoted by 1 and 2,
respectively. The index v labels the parameters X, that vary
in time and change the scattering matrix, and the sum over y
is over all such parameters.
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The scattering matrix

S:<1’11 t12>’ 1)

t) 1y

is given in terms of the reflection amplitudes r,, and trans-
mission amplitudes t,,, that describe transmission from res-
ervoir v’ to v. These quantities have matrix structure in the
space of conduction channels of the leads. In Eq. (20) they
are to be evaluated at the Fermi energy € of the leads.

Consider now specifically the domain-wall configuration
shown in Fig. 1, with ¢y=0 and with the domain wall lo-
cated at the origin. We parametrize this domain-wall
magnetization-direction texture by Q40 (x)
=[sin G4,(x),0,c0s O,,(x)]. Within the simplest two-band
mean-field model for the ferromagnetism [which could be
extended to more complicated and realistic situations (see
Ref. 63)], the wave function (x) =[¢,(x), #,(x)] of the elec-
trons with energy € moving in the presence of this texture
obeys the time-independent Schrédinger equation

h2 & A

ol QdW(X) 7 [(x) = elx), (22)

where 7 is the vector of Pauli matrices and A is the exchange
splitting. For simplicity we have taken the system to be one
dimensional. We will further assume that the magnetization
texture is symmetric (in an obvious sense) around the
domain-wall position.

Asymptotically, the scattering state for an electron coming
in from the left reservoir with spin state |o) is given by

k(f —ik, 1x ’
P'(x) = El et + R VIRA K 1|‘T>

(23)

on the left and

ko' ] x|t
P =3\t 24)

on the right. The wave vectors are given by &k,
=\2m(e+oA/2)/h?, with € as the electron energy. (Note that
the indices o,0’ €{],]} refer to spin projections on the z
axis, and that the respective number o takes on {+1,-1}.)
We assume now that the amplitudes r,, and 7., for a
domain wall with zero chirality are given, and we will deter-
mine them numerically later. (See Refs. 64 and 65 for ana-
Iytical expressions for these coefficients, valid for large and
small kp\, respectively.) All we need is that if we move the
domain wall to position rg,, the wave function (x—ry,) is a
solution of the Schrodinger equation for an electron moving
in the displaced domain-wall texture. From this we deduce
the transmission and reflection amplitudes for arbitrary
domain-wall position. Furthermore, if the domain-wall pre-
cession angle ¢, i.e., its chirality, becomes nonzero,

the  magnetization  texture  changes  to Q>x)
=[sin G4, (x)cos ¢y, sin G4, (x)sin ¢y, cos G4y (x)]. The solu-
tion of the Schrodinger equation for the wave function (Z(x)
of electrons moving in this texture is given by
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_ e—i¢0/2 0
L,/I()C) = ( 0 01902 > l,lf(x) > (25)
with #(x) as the solution of the Schrodinger equation in Eq.
(22) for a zero-chirality (¢o=0) domain wall. This is suffi-
cient to determine the chirality dependence of the transmis-
sion and reflection amplitudes.

Using these ingredients, we find for the reflection ampli-
tude for electrons off a domain wall at arbitrary position and
with arbitrary chirality that

( riy o2k iTay r ik k Dray=id )
T = e ratid 2Ty (26)
and for the transmission amplitude
tmei(kT‘kl)’dw t“e—iqﬁo
th = (t”ei% £ ek ) (27)

The reflection and transmission amplitudes for electrons
coming in from the right reservoir, denoted by ry, and t;,,
respectively, are determined in the same way and are given
by similar expressions. Because of the symmetries of the
domain wall we further have that ryy.,,=72._y_¢» and 1.4,
=t12;—0’—0" Furthermore’ rll;o’o”=_r22;o"zr and t21;o'o"=_t]2;o"o'
for 0# o’. The final results are given by

(r e ay - r”e_“kﬁki)’dw—ﬁ/’o)
Ip=\_ rp e kDt g o2k (28)
and for the transmission amplitude
tuei(kw—kl)rdw _ t”e_,%
b= (— t“ef% t”ei(kl—kT)rdw ) . (29)

Insertion of the results for the transmission and reflection
amplitudes into the expression for the current in Eq. (20),
and identifying X|=ry, and X,=¢,, yields the result

le]
Li=-5=- E[E (2|r¢m'|2 + |r0'—0|2 + |r—0'0'|2 - |ta'o'|2
g

drdw(t) |€|

oo | F = P Pl P

| T |2) d¢()(t)

(30)
containing again the two contributions, proportional to
drg,(t)/dt and d¢y(1)/dt, respectively. The above derivation
clearly shows that both these contributions are present in
general.

Figure 3 gives the result for the voltage® (that now in-
cludes the effect of the presence of the domain wall on the
conductance)

-1
AV = ! (31)

27T|e
(E ol + |rg_g|2)

for the various values of kz\ and for the exchange splitting
A/er=0.5 for the case of a field-driven domain wall which
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AV,

BB,

FIG. 3. Voltage induced by a moving domain wall for Gilbert
damping «;=0.01, for A/€=0.5, and for various values of kp\.
The voltage is normalized to Vy=guzBy/|e|. The magnetic field B
is in units of the Walker breakdown field By. For typical experi-
ments we have that Vy~0.5 uV.

exhibits Walker breakdown. In this situation we have that**

dgo() 1 guBBwRe[ ( B )2_1}
it~ (1+a}) *# By ’

Ldrg, () _ gusB 1 dey(1)
A dt aGh (¢ 7¢] dt ’

(32)

The various transmission and reflection amplitudes are deter-
mined by numerically solving the Schrédinger equation in
Eq. (22) for the specific domain-wall profile'¢

By (x) = 2 tan~! (™). (33)

This texture corresponds to a domain wall that interpolates
between a domain with magnetization pointing in the +z di-
rection and a domain with magnetization in the opposite di-
rection (see Fig. 1).

The induced voltage in Fig. 3 is for fields below Walker
breakdown qualitatively similar to that in Fig. 2 for the dif-
fusive case. The voltage is largest when kz\ = 1. This is to be
expected as the domain-wall resistance is also largest for that
situation,%*% and therefore nonadiabatic effects are also
large. We also find that the voltage becomes larger upon
increasing the ratio A/ ep.

The ballistic model presented here underestimates the
voltage for fields above Walker breakdown. This is most eas-
ily understood by taking the adiabatic limit kzpA —c. In that
case all the reflection coefficients r,,»—0, the diagonal
transmission coefficients ¢,,— 0, and the off-diagonal trans-
mission coefficients 7, — 1. In this limit we find that, ac-
cording to Eq. (30), the induced current and voltage become
zero. This is a result of the simplicity of the model presented
here and could be repaired by incorporating more transverse
channels. (See Refs. 20 and 67 for a discussion of subtleties
in describing spin-polarized transport with the Landauer-
Biittiker formalism.) To establish connection of the result of
our simple ballistic model with the result found in the diffu-
sive limit, it is easiest to put the spin polarization of the
current in by hand. This is done by weighing the spin-up and
down electrons coming from the left reservoir differently. In
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the adiabatic limit this amounts to taking |r;]*=(1+P)/2,
|t;|*=(1-P)/2, and putting all other coefficients equal to
zero. With this modification the result in Egs. (30) and (31)
reduces to that in Eq. (8) with B,.=,,=0.

We end by remarking that the ballistic model presented in
this section applies when the phase-coherence length of the
electrons is at least on the order of the domain-wall width.
Also, because we have taken only one (spin-resolved) trans-
port channel our calculation applies only to very tightly con-
fined structures such as ferromagnetic nanocontacts.®® [Al-
though it may well be that the model for the domain-wall
motion in Eq. (32) needs to be refined to apply to such situ-
ations.] Nonetheless, the method presented in this section
should, when modified to apply to more realistic geometries,
be a convenient starting point for addressing the ballistic
case should experiments approach this limit in the near fu-
ture.

IV. DISCUSSION AND CONCLUSIONS

We have discussed the effects of nonadiabaticity on the
voltage induced by a field-driven domain wall, and we con-
sidered both the diffusive and ballistic regimes of electronic
transport. In particular, we have shown that incorporating
effects of nonadiabaticity of the wall on the induced voltage
is done by the same renormalization that incorporates nona-
diabaticity in the description of current-induced propagation.

Future work will include incorporating also the effects of
anisotropic magnetoresistance on the induced voltage and
more sophisticated models of domain-wall motion, such as
vortex walls. (We mention however that the rigid domain-
wall model discussed in this paper is known to give sensible
results below Walker breakdown.®®) For vortex walls the
nonadiabatic effects mentioned in this paper likely play a
less important role. Another interesting subject for study is
the effect of spin relaxation and nonadiabaticity on the mo-
tive forces in mesoscopic rings,’” where these effects may
actually be absent.

We hope that the present work, as well as previous
theoretical work,!437-3942464749.60 i1l motivate further
experiments® on observing motive forces and voltages in-
duced by time-dependent magnetization textures. One inter-
esting aspect is the possibility of determining the degree of
nonadiabaticity and effects of spin relaxation directly from
such experiments.?
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